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Abstract A simple model allowing the description and the
visualization of the bonding in solids in terms of classical
chemical concepts of bond order and valence was proposed.
The model is based on the straightforward generalization of
the Wiberg indices, which are known to mimic the pattern of
bonding interactions in ordinary isolated molecules, to infi-
nite periodical structures. The picture of bonding based on the
applications of this model to idealized 1D, 2D and 3D lattices
is remarkably reminiscent of the model proposed a long time
ago by Pauling to describe the nature of the metallic bond-
ing. It implies that in addition to small fraction of valence
electrons involved in the covalent bonding with the near-
est neighbors, the majority have the character of “mobile”
electrons, which are responsible for the build-up of metallic
properties in the studied solids.

1 Introduction

Material science, as the realm of the design and the syn-
thesis of new advanced materials with unusual mechanical,
electrical, optical or magnetic properties is one of the most
rapidly expanding fields of contemporary research. As most
of these advanced materials are solids, their design and the
synthesis relies considerably on the dialogue between solid
state physicists, who possess the mathematical tools for the
description of the solid state, and chemists whose task is the
actual synthesis of these materials. Despite its importance,
such a dialogue is still a little hindered by the fact that the
language which chemists and physicist use for the descrip-
tion of the systems they are working with is considerably
different. While physicist’s approach to solids is based on
a mathematical description in terms of Brillouin zones and
k-states [1], the approach of chemists is much more intuitive
and relies on the classical concepts of bonds, bond orders,
valences etc., terms of which chemists are traditionally used
to describing molecules and their structures.
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In order to overcome this barrier, and to allow both groups
to understand each other better, considerable effort has been
devoted in recent years to the reconciliation of both app-
roaches. An example in this respect can be, for example, the
books by Harrison [2], Cox [3] and Hoffmann [4], in which
the principles of solid state chemistry are being explained
with the chemists audience in mind. Our aim in this study is
to pursue this chemist oriented approach to the description
of the structure of the solids and to demonstrate that even
such very chemical concepts as bond order and valence, orig-
inally introduced in the realm of classical chemistry, can quite
straightforwardly be generalized also to infinite periodical
structures. In this connection it is perhaps worth mentioning
that similar and in fact the first attempt to generalize the bond
order to solids was proposed some time ago by Hoffmann [4]
in his concept of crystal orbital overlap population (COOP),
but in contrast to this concept which is closely related to the
definition of bond order by Coulson [5], our approach relies
on the generalization of the so-called Wiberg index [6]. In
the following part the basic ideas of our generalization will
be presented.

2 Theoretical

The concept of bond order was introduced into chemical the-
ory as a theoretical counterpart of the classical concept of
bond multiplicity. The most widely used definition of bond
order is due to Wiberg [6], who defined it in terms of the
square of the elements of charge density-bond order matrix
[5] (Eq. 1).

WAB =
A∑

µ

B∑

ν

p2
µν . (1)

This original definition is applicable not only for orthogonal
basis sets, but also to generalization to non-orthogonal basis
sets reported by Mayer [7]. The important feature of Wiberg
as well as of Mayer generalized bond orders is that their
values mimic the pattern of bonding interactions in a mole-
cule as depicted in the classical structural formula remark-
ably well. Thus, for example, the fact that a given pair of
atoms is formally linked by a bond in the classical structural
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formula finds its reflection in the nonnegligible value of the
corresponding bond order. Moreover, the numerical values of
calculated bond orders between formally bonded atoms often
surprisingly coincide with classical bond multiplicities. On
the other hand, the bond orders between the atoms which
are not formally linked are practically negligible. Wiberg’s
definition of bond orders served subsequently also as a basis
for the generalization of another classical chemical concept,
namely the concept of valence. This generalization was pro-
posed by Gopinathan and Jug [8] who defined the valence of
the atom A as: (Eq. 2)

VA =
∑

B �=A
WAB , (2)

and the calculated values of valences do indeed correspond
fairly well with the classical chemical expectations.

After having reminded the definition of bond order and
valence for “ordinary” molecules, let us demonstrate that
basically the same formulas can be applied also to infinite
periodical structures. For this purpose it is convenient to first
rewrite the original formula (1) into the alternative form (3)
[9],

FAB = 2
occ∑

i

〈i |〉A 〈j |i〉B ,

WAB = 2FAB , (3)
〈
i |j〉A =

∫

�A

ϕ∗
i (r)ϕj (r)dr , (4)

where the integration of the overlap integral of two occu-
pied molecular orbitals i and j is over the atomic domains
resulting from Bader’s virial partitioning [10] of the electron
density function ρ(r). The formula (3) can thus be regarded
as the AIM generalized definition of bond order.

This generalized formula reduces to the original defini-
tion if the overlap integrals (4) are approximated using a
kind of Mulliken-like approximation according to which the
electron is assumed to be in the region of the atom A, if it
resides in the orbital localized on that atom. As it will be
shown, similar approximation will also be used in our gen-
eralization of the concept of bond order to infinite periodical
structures.

This generalization is based on the straightforward paral-
lel between discrete molecular orbitals of isolated molecules
and quasi-continuum of k-states in the solid state. On the
basis of this parallel, the original definition of the bond order
(1) can be rewritten in the form (5)

F solid
AB = 2

occ∑

k

occ∑

k′
〈k|k′〉A〈k|k′〉B

∼= 2

kF∫

0

k′
F∫

0

〈k|k′〉A〈k|k′〉Bdkdk′ , (5)

W solid
AB = 2F solid

AB .

In the following part the application of this formula to several
simple periodic structures will be reported.

The simplest form of infinite periodical system is a linear
chain in which each atom contributes to the bonding by one
electron in a single 1s orbital χ . This model is, of course, a bit
idealized as in the real situation such a chain would undergo
a Peierls distortion [11], but for the purpose of the demon-
stration of the principles of this approach, this simple model
seems plausible.

Under the above assumptions, the one-electron orbitals
of this system are given by the Bloch functions of the form
(6)

ψk(r) = 1√
N

∑

m

ei
�k·�rmχ(�r − �rm) , (6)

whereN is the total number of the atoms, and the summation
runs over the individual atoms in the chain. Assuming now,
without the loss of generality, the orthogonality of atomic
orbitals in the chain, the integrals over the atomic domains
in the formula (4) can be approximated as (6).

〈k|k′〉A = 1

N

∑

m

∑

n

ei
�k·�rme−i�k′ · �rn

×
∫

�A

χ∗(r − rn)χ(r − rm)dr ∼= 1

N
ei(

�k−�k′
)�rA (7)

Within this approximation, the formula for the bond order
between the pair of atoms A and B reduces to (8)

W chain
AB = 4

N

kF∫

0

k′
F∫

0

ei(
�k′−�k)(�rB−�rA)dkdk′ . (8)

Taking into account that for the linear chain with the lattice
separation a the difference (rB − rA) can be written as j.a
(j = 1, 2, 3 . . . .), and that the wave vectors k and k′ can be
alternatively expressed as (9)

k = 2πn

Na
, k′ = 2πn′

Na
(n = 0, 1, 2, 3 . . . ..N − 1) , (9)

the bond order between the pair of neighboring atoms is given
by formula (10)

WA(A+1) = 4

N

N/2∫

0

e−i 2πn
N dn

N/2∫

0

ei
2πn′
N dn′ = 4

π2
. (10)

Similarly, it can be shown that the bond order WA(A+2) be-
tween the next nearest neighbors as well as between all pairs
of atomsA,A+2j (j = 1, 2, ....) equals identically zero, while
bond orders between the atoms A, A+(2j + 1) is given by
(11)

W solid
A(A+(2j+1)) = 4

π2
· 1

j 2
. (11)
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Taking into account that the monoatomic termW solid
AA is equal

to 1, the above bond orders can be shown to satisfy the nor-
malization condition (12)

1

2

∑

A

W solid
AA +

∑

A<B

W solid
AB

= N

(
1/2 + 4

π2

(
1 + 1

32
+ 1

52
+ 1

72
+ . . . .

))
= N ,

(12)

which is the straightforward counterpart of the similar nor-
malization valid for the ordinary Wiberg indices in isolated
molecules.

On the basis of this parallel it is possible to introduce the
solid state counterpart of the atomic valence by the formula
(13)

V solid
A =

∑

B �=A
W solid
AB (13)

Let us now attempt to explore the concept of the valence
further. As it is straightforwardly evident, the atomic valence
of any of the atom in the chain is, consistent with the expec-
tation, equal to 1. More detailed inspection of the individ-
ual terms contributing to the total valence shows that the
valence electron of each atom in the chain is engaged in
bonding interactions not only with its nearest neighbors but
that a certain nonnegligible contributions come also from
the interactions with more distant atoms. This situation is
quite different from what was typical for “ordinary” mole-
cules where the bond orders between classically nonbonded
atoms are generally very small. This implies that due to the
existence of nonnegligible bond orders between non-nearest
neighbors, the bonding in the chain is much more delocal-
ized than in isolated molecules. This suggests that it may
be useful to partition the total atomic valence in solids into
localized covalent part which accounts for the bonding to
nearest neighbors and the “mobile” part which reflects the
existence of long-distance bonding interactions. This result
is very interesting since the existence of “mobile” electrons
was anticipated already long time ago in free-electron model
of metals [1]. The only difference is, that while free-electron
model assumes that the “mobile” electrons are all the valence
electrons of the metal, the above approach demonstrates that
at least part of the valence electrons is still involved in local-
ized covalent interactions with the nearest neighbors.

In the case of our simple model, the contribution of long-
distance “mobile” bonding covers roughly 20% of the total
bonding capacity of each atom in the chain.

V mobile
A = V solid

A −
nearest∑

B �=A
W solid
AB = 1 − 2 · 4

π2
∼= 0.20 . (14)

This, of course, is not very much, but as it will be shown, the
amount of mobile electrons dramatically increases on going
from simple linear chain to 2D and 3D solids. In this con-
nection it is interesting to remind that a qualitatively similar
model of bonding was proposed a long time ago by Pauling to

explain the nature of the so-called metallic bond [12].Accord-
ing to his model, the metallic bond is closely related to the
ordinary covalent or electron pair bond. The only difference
is that because the number of available electrons is usually
less than the number of nearest neighbors, the bonds must
resonate among all available positions. The effect of such a
resonance is the effective decrease of the bond order with the
bonded neighbors so that greater fraction of valence electrons
remains available as “mobile” electrons.

In order to demonstrate the gradual build-up of metallic
character let us analyze first the bonding in simple square pla-
nar lattice with the lattice separation a, in which each atoms
contributes again by one electron in single 1s orbital.

The Bloch functions for this simple model lattice have
the form

ψk(�r) = 1

N

∑

m,n

ei
�k·�rmnϕ(�r − �rmn) , (15)

where

�rmn = ma�i + na �j , (16)

denotes the position of the atom in the direct lattice and k is
the wave vector

�k = 2πn1

Na
�i + 2πn2

Na
�j . (17)

Assuming again the orthogonality of the basis orbitals in the
lattice and using the Mulliken-like approximation of the inte-
grals

〈
k′ ∣∣ k

〉
A

(17)

〈k|k′〉A = 1

N2
ei(

�k−�k′
) · �rA , (18)

The bond order between the nearest neighbors is given by
(18)

W
square
AB = 4

N4

(
N

2

)2
N/2∫

0

ei
2πn′
N dn′

N/2∫

0

e−i 2πn
N dn

= 2

4π2
(1 − cosπ) = 1

π2
∼= 0.101 . (19)

As each atom of the lattice contributes 1 electron and at the
same time has four nearest neighbors, the total amount of
“mobile” electrons is roughly equal to 0.6 (20)

V mobile
A = V solid

A − 4 · 1

π2
∼= 0.60 . (20)

As it can be seen the number of mobile electrons is indeed
higher than in the case of the linear chain and a further in-
crease is observed on extending the above model to 3D. Thus,
for example, the same approach applied to the 3D solid with
simple cubic cell yields the bond order between the nearest
neighbors equal to 1/4π2 (20)

W cubic
AB = 4

N6

(
N

2

)4
N2

4π2
2(1 − cosπ) = 1

4π2
∼= 0.025 .

(21)
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This implies that because each atom is now surrounded by
6 nearest neighbors, the total amount of “mobile” electrons
increases to 85%.

V mobile
A = 1 − 6 · 0.025

.= 0.85 . (22)

We can thus see that the transition from simple linear chain to
3D solid is connected with the gradual increase in the amount
of “mobile” electrons and, consequently, to the build-up of
metallic character. As it will be shown below, the same gen-
eral trend holds also for other more realistic structures. As
an example of such a system let us analyze the nature of the
bonding in alkali metals whose elementary cell is of bcc type.

For this purpose let us introduce the basis vectors of the
direct lattice (23)

�a1 = a

2
(�i − �j + �k) ,

�a2 = a

2
(�i + �j − �k) ,

�a3 = a

2
(−�i + �j + �k) , (23)

and let us assume that each elementary cell contains just one
atom which contributes to the bonding by one electron. The
Bloch functions characterizing the individual k-states can be
written as (24)

ψk(�r) = 1√
N3

∑

m,n,o

ei
�k·�rmnoϕ(�r − �rmno) , (24)

where �rmno characterizes the position of the atom in the lattice

�rmno = m�a1 + n�a2 + o�a3, (25)

and the wave vector �k can be expressed using basis vectors
of the reciprocal lattice as (24)

�k = n1

N
�b1 + n2

N
�b2 + n3

N
�b3 (26)

Adopting now, as in the previous cases, the above-mentioned
Mulliken-like approximation, bond order between the nearest
neighbors can straightforwardly be calculated. But in contrast
to the previous two examples, the situation here is a slightly
different because the specification of the neighboring atoms
requires one to distinguish between two cases. One of them
corresponds to the neighbors at the position (25)

��r1,2 = (m± 1)�a1 + (n± 1)�a2 + (o± 1)�a3 , (27)

while the other one involves six remaining neighbors local-
ized at (26)
��r3,4 = (m± 1)�a1 ,

��r5,6 = (n± 1)�a2 ,

��r7,8 = (o± 1)�a3 , (28)

Substituting these position vectors into the general defini-
tion of bond order (5) it is possible to show, that bond orders
between the neighbors localized at positions (25) equals to
(27)

Wbcc
AB1,2

= 4

N6

(
N2

4π2

)3

[2(1 − cosπ)]3 = 4

π6
∼= 0.004 ,

(29)

while bond orders between the neighbors localized at the
positions (26) are equal to (28)

Wbcc
AB3,4,5,6,7,8

= 4

N6

(
N

2

)4 (
N2

4π2

)
[2(1 − cosπ)]

= 1

4π2
∼= 0.025 . (30)

On the basis of these values it is then useful to introduce the
weighted mean of bond orders as (29)

W
bcc
AB = 4/π6 + 3/4π2

4
= 1

π6
+ 3

16π2
∼= 0.020 . (31)

Taking now into account that each atom in bcc cell is sur-
rounded by eight nearest neighbors, the amount of electrons
engaged in the covalent bonding with the neighbors exhausts
only about 16% of the total bonding capacity while 84% are
again available as “mobile” electrons for the build-up of the
metallic character.

Similarly it is possible to analyze bonding in another sim-
ple metallic structure, like fcc, which is characteristic for rare
metals as Cu, Ag and Au. The situation here is, however, a
bit more complex as the electrons of the filled d-shell also
contribute to bonding, but a first rough idea of the bonding
situation can be obtained by assuming again that each atom
contributes just one singly occupied valence orbital. Under
this assumption the mean bond order between nearest neigh-
bors can be found to be 0.0175. This implies that with 12
nearest neighbors, the amount of electrons involved in the
covalent bonding with these neighbors is about 21%, while
remaining 79% are again available as “mobile” electrons.

These results are very interesting.They demonstrate, nam-
ely, that despite its simplicity, the proposed model is indeed
able to reveal the most basic features of the bonding in sol-
ids, like, for example, the existence of “mobile” electrons in
metals. The above approach is, however, quite general and
can be applied also to other types of solids at a more realistic
level of the theory and we believe that such an application can
contribute to the reconciliation of physically and chemically
oriented approach to the description of the bonding in these
systems.
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